Enhancement of lithium storage performance of carbon microflowers by achieving a high surface area.
نویسندگان
چکیده
High-surface-area, nitrogen-doped carbon microflowers (A-NCFs-4) assembled from porous nanosheets are prepared in a three-step process: soft-templating self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves not only as a structure-directing agent, but also as a nitrogen source. The resultant A-NCFs-4 has a hierarchical porous structure and its specific surface area is as high as 2309 m(2) g(-1). When used as anode, it exhibits a reversible capacity as high as 807 mAh g(-1) at 300 mA g(-1) after 100 cycles, and an excellent rate capability of 200 mAh g(-1) at a high current density of 8 A g(-1). Compared with unactivated counterpart, A-NCFs-4 exhibits a significantly improved lithium storage capacity and rate capability; this can be attributed to its unique structural characteristics and high surface area. The hierarchical micro-/mesopore structure, high surface area, and nitrogen doping of A-NCFs-4 could guarantee fast mass transport for lithium species, enhance the A-NCFs-4/electrolyte contact area, shorten the lithium-ion diffusion length, and accommodate strain induced by volume changes during the electrochemical reaction. The results indicate that the as-prepared A-NCFs-4 could be a promising candidate as a high-performance anode for lithium-ion batteries.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملGraphene Nanosheets Based Cathodes for Lithium-Oxygen Batteries
Lithium-oxygen batteries have attracted considerable attention as a promising energy storage system. Although these batteries have many advantages, they face several critical challenges. In this work, we report the use of graphene nanosheets (GNSs), nitrogen-doped graphene nanosheets (N-GNSs), exfoliated nitrogen-doped graphene nanosheets (Ex-N-GNSs), and a blend of Ex-N-GNSs with nitrogen-dope...
متن کاملImproved Li storage performance in SnO2 nanocrystals by a synergetic doping
Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the m...
متن کاملAtomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance.
A unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous Ni(x)Co(1-x)O nanosheets are first fabricated directly on nickel foam substrates by a hydro...
متن کاملHierarchically porous germanium-modified carbon materials with enhanced lithium storage performance.
In this work, hierarchically porous germanium-modified carbon materials (C/Ge) have been successfully synthesized by a facile hydrothermal method followed with a subsequent annealing treatment. The C/Ge nanocomposites have a unique hierarchically microporous-mesoporous structure, with a surface area of 331 m(2) g(-1). The C/Ge composites exhibit improved capacity, cycling performance and rate c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry, an Asian journal
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2014